
E
APPLICATION

NOTE

AP-684

Understanding the Flash
Translation Layer
(FTL) Specification

Order Number: 297816-002

December 1998

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation
P.O. Box 5937
Denver, CO 80217-9808

or call 1-800-858-4725
or visit Intel’s Website at http://www.intel.com

COPYRIGHT © INTEL CORPORATION 1997, 1998

*Third-party brands and names are the property of their respective owners.

CG-041493

E AP-684

3

CONTENTS

PAGE

1.0 INTRODUCTION .. 5

2.0 OVERVIEW OF FLASH TRANSLATION LAYER .. 5

2.1 Virtual Block Device .. 5

2.2 Flash Technology.. 5

3.0 ERASE UNITS.. 7

3.1 Erase Unit Header... 7

3.1.1 Flags .. 7

3.2 Block Allocation Information .. 9

3.3 Block Allocation Map... 9

4.0 VERIFY FTL PARTITION ... 11

5.0 VIRTUAL BLOCK MAP–VIRTUAL-TO-LOGICAL MAPPING.. 12

5.1 First Virtual Mapped Address .. 12

6.0 VIRTUAL PAGE MAP–LOCATING THE VIRTUAL BLOCK MAP PAGES.. 13

6.1 Page Map Handling... 13

6.2 Replacement Pages.. 13

6.2.1 Replacement Page Map ... 13

7.0 LOGICAL TO PHYSICAL MAPPING 14

8.0 READ 14

9.0 WRITE.. 14

10.0 UNIT RECOVERY/RECLAIM 14

APPENDIX A: Glossary 15

APPENDIX B: Structures... 17

APPENDIX C: Availablility 19

APPENDIX D: Additional Information... 20

AP-684 E

4

REVISION HISTORY
Number Description

-001 Original Version

-002 Document formerly referred to as a technical paper; assigned application note number.
Legal disclaimer updated.

E AP-684

5

1.0 INTRODUCTION

This document defines the interfaces and operation
behavior of the Flash Translation Layer, or “FTL,” as it
is more commonly known. For more information about
the FTL specification, contact PCMCIA for the full
FTL specification contained in the Media Storage
Formats Specification of the PCMCIA PC Card
Standard (see Appendix D).

2.0 OVERVIEW OF FLASH
TRANSLATION LAYER

Flash memory is valued in many applications as a
storage media due to its fast access speeds, low-power,
nonvolatile, and rugged operation. FTL is the driver
that works in conjunction with an existing operating
system (or, in some embedded applications, as the
operating system) to make linear flash memory appear
to the system like a disk drive. It does that be doing a
number of things. First, it creates “virtual” small blocks
of data, or sectors, out of flash’s large erase blocks.
Next, it manages data on the flash so that it appears to
be “write in place” when in fact it is being stored in
different spots in the flash. Finally, FTL manages the
flash so there are clean/erased places to store data. How
FTL does these is described in detail in the following
sections.

2.1 Virtual Block Device

DOS block device drivers perform input and output in
structured pieces called blocks. Block devices include
all disk drives and other mass-storage devices on the
computer. FTL emulates a block device. The flash
media appears as a contiguous array of storage blocks
numbered from zero to one less than the total number
of blocks. FTL is a translation layer between the native
DOS BPB/FAT file system and flash. FTL remaps the
data to the physical location at which the data is to be
written. This allows the DOS file system to treat flash
like any other block storage device and remain
ignorant of flash device characteristics. FTL appears to
simply take the data from the file system and write it at
the specified location (sector). In reality, FTL places

the data at a free/erased location on the flash media and
notes the real location of the data. It also invalidates
the block that previously contained the block’s data (if
any). So when the file system asks for the data that was
written out, FTL finds and reads back the proper data.

2.2 Flash Technology

Flash media allows only two states: erased and non-
erased. In the erase state, a byte may be either all ones
(0xFF) or all zeroes (0x00) depending on the flash
device. A given bit of data may only be written when
the media is in an erase state. After it is written to, the
bit is considered dirty and unusable. In order to return
the bit to its erase state, a significantly larger block of
flash called an Erase Zone (also known as an erase
block) must be erased. Flash technology does not allow
the toggling of individual bits or bytes from a non-
erased state back to an erased state. FTL shields the file
system from these details and remaps the data passed to
it by writing to unused data areas in the flash media.
This presents the illusion to DOS that a data block is
simply overwritten when it is modified—while in
reality, the new data has been written somewhere else
on the media. FTL also takes care of reclaiming the
discarded data blocks for reuse.

Although there are many types and manufacturers of
flash memory, the most common type is known as
NOR flash. NOR flash, such as that available from
Intel Corporation, operates in the following fashion:
Erased state is 1, programmed state is 0, a 0 cannot be
changed back to a 1 except by an erase, and an erase
must occur on a full erase block. Throughout the rest of
this document, the examples and bit states will be
based on the way NOR flash works.

Figure 2 shows some specific examples of flash
commands and the resulting content changes. In the
first three program sequences, a bit can be toggled
from a “1” to a “0” or left as a “1.” However, a “0”
may not be set to a “1.” The only time a bit can be
restored to a “1” from a “0” is during an erase process,
as shown at the bottom of the figure.

AP-684 E

6

MAP
R/W
Block 1
Sec 12

R/W 2
Sec 6

R/W 3
Sec 19

R/W 4
Sec 65

R/W 5
free

R/W 6
Sec 0

R/W 7
deleted

R/W 21
Sec 14

MAP

etc.FTL MAP
(VPM, VBM,
and BAM)

Example:
DOS requests
sector 14-FTL
map points to
R/W Block 21
for the data

DOS Sector Number Physical Location in FlashFTL MAP

7681

Figure 1. FTL Sector Relocation

1111 1111B (FFH)

0111 1111B (7FH)

0011 1111B (3FH)

0011 1111B (3FH)

Program
0111 1111B

Program
0011 1111B

Program
1111 1111B

Erase Block

0111 1111B (7FH)

0011 1111B (3FH)

0011 1111B (3FH)

1111 1111B (FFH)

Flash Contents Flash Command Resulting Contents

7816_02

Figure 2. Example of Flash Commands/Content Changes

E AP-684

7

Erase Unit

Erase Unit

Erase Unit

Erase Unit

Read/Write Block

Read/Write Block

Read/Write Block

Read/Write Block

Read/Write Block

Read/Write Block

7816_03

Figure 3. Erase Unit Divided into Read/Write Blocks. Each Read/Write Block Is the Same Size as a
Virtual Block (Sector) Used by the Software Layers above FTL.

3.0 ERASE UNITS

FTL divides the flash media into one or more Erase
Units of equal size. The size of an Erase Unit is
determined during FTL formatting but is also dependent
on the size of the device’s flash Erase Block as well as
component interleaving. An Erase Unit consists of one
or more contiguous Erase Zones. An Erase Zone is the
smallest contiguous area that can be erased in a single
erase operation. If two 8-bit devices are interleaved to
form a 16-bit memory, the Erase Unit will consist of an
Erase Zone (or Erase Block) on each of the devices. For
this example, 1 Erase Unit = 2 Erase Zone (one from
each chip in the chip pair). An erase zone is the same as
an Erase Block of a flash chip (64-Kbyte typical for
current Intel® FlashFile™ memory) devices.

An Erase Unit is evenly divided into one or more
equally-sized Read/Write blocks. Each Read/Write
block is the same size as a Virtual block used by the host
file system. A Virtual Block is the same as a DOS data
sector (typically 512 bytes).

3.1 Erase Unit Header

The Erase Unit Header (EUH) is present (created by the
FTL formatter) in every erase unit on the media. The
EUH is located at either offset zero (0) of the erase unit

or at an alternative offset specified by the
AltEUHOffset field of the an EUH located at offset zero
(0) of another Erase Unit. The EUH contains various
information regarding the FTL partition. Most of the
fields apply globally to the partition and a couple are
erase-unit specific. All the EUHs on the media are
identical except for the EraseCount and LogicalEUN
fields.

3.1.1 FLAGS

The Flags field in the EUH contains bits describing how
checksum and block allocation information are stored on
the media and the polarity of the media.

Table 1. Erase Unit Header Flags Field

Bit Description

0 HiddenAreaFlag

1 ReversePolarityFlash

2 DoubleBAI (Double Block Allocation
Information)

3–7 Reserved for future use. All of these bits
must be set to zero (0).

NOTE:
See Media Storage Formats section of PC Card
Standards for additional information.

AP-684 E

8

Table 2. Erase Unit Header

Offset Field Sz Description Example: 4-Meg F008-based Card

HEX Comments

0 LinkTargetTuple 5 PCMCIA Link Target tuple 13 03 43 49 53 (..CIS)

5 DataOrganization
Tuple

10 PCMCIA Data
Organization tuple

46 39 00 46 54 4C 31 30 30 00

 (F9.FTL100.)

15 NumTransferUnits 1 Number of transfer units in
partition

01

16 Reserved 4 Reserved xx xx

20 LogicalEUN 2 Logical Erase Unit
Number of this block

FF FF

22 BlockSize 1 Size of a Read/Write
Block

09h 29h = 200h (512 dec)

23 EraseUnitSize 1 Size of an Erase Unit 11h 211h = 20000h (128k dec)

24 FirstPhysicalEUN 2 Physical Erase Unit where
FTL partition begins

00 00

26 NumEraseUnits 2 Total number of Erase
Units in partition

20 00 (0020)

28 FormattedSize 4 Total formatted size of
partition

00 10 3C 00 (003C1000)

32 FirstVMAddress 4 First virtual address
physically mapped in VBM
page on media

00 00 01 00 (00100000)

36 NumVMPages 2 Total number of VBM
pages

3D 00 (003D)

38 Flags 1 Special bit-mapped flags 00

39 Code 1 Code designating EDAC
type

FF None

40 SerialNumber 4 Partition serial number 00 00 00 00

44 AltEUHOffset 4 Offset of alternative EUH 00 00 00 00

48 BAMOffset 4 Offset of BAM from start
of EUH

44 00 00 00 (00000044)

52 Reserved 12 Reserved xx

NOTE:
See Media Storage Formats section of PC Card Standards for additional information.

E AP-684

9

3.2 Block Allocation Information

Each Erase Unit keeps allocation information about
every Read/Write block in the Erase Unit. Every
Read/Write block has a 4-byte value tracking its current
state. A Read/Write block in an Erase Unit is either
deleted, bad, free, or allocated at any given time.
Read/Write blocks store four types of data: FTL Control
Ctructures, Virtual Block Data, Virtual Block Map
Pages, and Replacement Pages.

Block allocation entries for Virtual Block data, Virtual
Block Map Pages, and Replacement Pages contain two
codes. The least significant seven bits indicate whether
the block contains Virtual Block data, a Virtual Block
Map Page, or a Replacement Page. The most significant
25 bits are used to compute the virtual address of the
data. FTL assigns a virtual address to each Virtual Block
in the contiguous array of blocks presented to the host
file system. For Virtual Block Data, the 25 bits are the
most significant bits of the virtual address. The least
significant bits of the virtual address are assumed to be
zeros (0). For Virtual Block Map Pages and
Replacement Pages, the most significant 25 bits are used

to build the Virtual Page Map. Read/Write blocks
containing Virtual Block data have positive BAM
entries and positive virtual addresses. Read/Write blocks
containing VBM Pages and Replacement Pages have
negative BAM entries and negative virtual addresses.
Figure 4 contains some example BAM entries and the
corresponding block types.

3.3 Block Allocation Map

According to the FTL specification, block allocation
information may be stored in two different ways. One
method is to store the allocation in hidden areas next to
or related to the Read/Write block to which it refers. The
other method is to store the allocation information for all
the Read/Write blocks in the Erase Unit together in an
array called the Block Allocation Map (BAM). This is
the most common technique used by the commercially
available FTL solutions. One of the bits in the EUH
Flags field (see Table 4) indicates which method is used
on the media. Figure 4, below, is an example of the kind
of entries that may be contained in a BAM. To the right
of each BAM entry is its corresponding definition.

Erase Unit Header

Block Allocation Map

Free Blocks, Virtual Blocks,
Virtual Bock Map Pages,
and Replacement Pages

00000030

00000030

00000440

00000000

FFFFFE40

0002A440

FFFFFFFF

FFFFFA60

00000000

FTL Control Structure

FTL Control Structure

Virtual Block 2

Obsolete

Page -1 of VBM

Virtual Block 152h

Free

Page -3 of VBM

Obsolete

7816_04

Figure 4. Block Allocation Map Example

AP-684 E

10

Table 3. Block Allocation Information

32-Bit BAM Entry Meaning Description

0xFFFFFFFF Free Read/Write block is available for writing.

0xFFFFFFE

or

0x00000000

Deleted Data in block is invalid. This Read/Write block must be
erased before it may be reused. The value
0xFFFFFFFE indicates that a write operation on this
block was interrupted before completion. The value
0x00000000 (all bits programmed) indicates that the
data in this block is obsolete.

0x00000070 Bad This Read/Write block is unusable and may not be
written to or read from.

0x00000030 Control This Read/Write block contains FTL control structures
(e.g., EUH, BAM, ECCs, etc.).

0xXXXXXX40 Data or Map Page Contains data or a Virtual Map Page.

0xXXXXXX60 Replacement Map
Page

Replacement Page for a Virtual Map Page.

NOTE:
See Media Storage Formats section of PC Card Standards for additional information.

Table 4. Block Allocation Information Example

32-Bit BAM
Entry

Page Type Logical
Address

Page Number

0x00003240 Data Page 0x3200 N/A

0xFFFFFE60 Replacement Map Page N/A Replacement VBM Page -1

0xFFFFFC40 Map Page N/A VBM Page - 2

0x001B2440 Data Page 0x1B2400 N/A

0xFFFFFA40 Map Page N/A VBM Page -3

0xFFFFFE40 Map Page N/A VBM Page -1

E AP-684

11

4.0 VERIFY FTL PARTITION

There are two ways to identify a Flash Translation Layer
(FTL) partition. An FTL partition may be identified by
reading the PC Card’s Card Information Structure (CIS)
or searching the storage media for FTL data structures.
The FTL Data Organization Tuple (located at the
beginning of each EUH) is shown in Table 5.

If FTL uses the entire media, the CIS is not required to
contain partition information. An FTL partition may be
recognized if an FTL Erase Unit Header is found in the
first megabyte of the storage media and the information
in the header is valid. The search for the FTL Data
Organization Tuple entails scanning at offset five of the
Erase Unit Header for each Flash Erase Zone in the first
megabyte of the storage media. If the tuple is not found
within the first megabyte of the partition area, the media
is not an FTL data store. If the tuple is found, the rest of
the entries in the Erase Unit Header must be validated.

A dynamic map of the logical to physical translation
may also be built during this validation process. FTL
will read every EUH on the media starting with the unit
described by the FirstPhysicalEUN field. The EUH
must be found at either offset zero (0) or at the
AltEUHOffset. The AltEUHOffset may be found in an
EUH located at offset zero (0) of another block. If the
EUH is not found, the unit is treated as a transfer unit. If
two Erase Units have the same LogicalEUN, either
Erase Unit may be treated as a transfer unit. After all the
EUHs have been read, the total number of units with
distinct and non-negative LogicalEUNs must equal
NumEraseUnits minus NumTransferUnits.

The BAM is also scanned to locate VBM Pages and
Replacement Pages. The total number of VBM Pages
found must equal NumVMPages. If a VBM Page is
missing and a Replacement Page exists for that
particular VBM page, then the Replacement page is used
as the original VBM Page. If a VBM Page is missing
and a Replacement Page does not exist, recovery
operations must be performed. If duplicate VBM Pages
are found, only one is used.

• Related FTL Functions: Fill_VBM_PageMap

Table 5. FTL Data Organization Tuple

Byte D7 D6 D5 D4 D3 D2 D1 D0

0 Tuple Code CISTPL_ORG, 46H

1 Tuple Link Link to next tuple (at least 07H)

2 TPLORG_TYPE TPLORGTYPE_FS, 00H

3–9 TPLORG_DESC “FTL100\0” Null terminate string identifying FTL partition.

NOTE:
See Media Storage Formats section of PC Standards for additional information.

AP-684 E

12

Erase Unit Header

Block Allocation Map

Virtual Block Data,
Virtual Map Pages and
Replacement Pages

000A0600
Logical Address A0600

Logical Address C0800

Use Repacement
Page Entry

Logical Address CC00

000C0800

00000000

0000CC00

7816_05

Figure 5. Virtual Block Map Page Example

5.0 VIRTUAL BLOCK MAP–
VIRTUAL-TO-LOGICAL
MAPPING

FTL performs virtual to logical mapping translations
through the use of a Virtual Block Map (VBM). The
VBM consists of one or more Pages, each the same size
as the Virtual Blocks presented to the host system. Each
VBM Page is an array of 32-bit entries; each entry
points to a logical address on the media where the
corresponding Virtual Data block resides. VBM entries
are stored in little-endian order on the media. FTL uses
the virtual block number from the host file system as the
index into a VBM Page. The VBM is constructed from
the virtual addresses of Virtual Data blocks.

The size of the VBM can be calculated by dividing the
media’s FormattedSize by the Virtual Block BlockSize
and multiplying the result by the size of a VBM entry
(32-bits). The number of Pages (NumVMPages)
required for the VBM is found by taking the size of the
VBM and dividing it by BlockSize and rounding up to
the nearest whole number. Each VBM Page is the size of
a Read/Write block. Space for the entire VBM is always
reserved on the media whether or not the VBM is
maintained on the media itself. At the time of media
formatting, FTL indicates in the FirstVMAddress field
of the Erase Unit Header exactly how much of the VBM
is actually maintained on the media.

5.1 First Virtual Mapped Address

The First Virtual Mapped Address (FirstVMAddress)
refers to the lowest virtual address that is mapped in a
VBM on the media. Virtual addresses below the
FirstVMAddress are typically not kept on the media so,
in that case, the VBM for these addresses are recreated
in system memory during card insertion or start-up. The
sectors in the lower part of the virtual memory space are
modified frequently by FAT. If those VBMs were
maintained in flash, the numerous accesses to that
memory space would require the frequent updating of
BAM entries, VBM entries, and data—thus greatly
impacting performance. Keeping this information in
system memory increases the Read/Write block usage
and decreases the amount of time before reclaim needs
to happen.

A larger FirstVMAddress may improve performance,
but increases the system memory requirements. The
largest FirstVMAddress FTL supports is 0x10000. If it
is set to zero (0), then FTL maintains the entire VBM on
the media. If the FirstVMAddress exceeds the
FormattedSize of the media, none of the VBM is
maintained on the media. When all or a portion of the
VBM is not maintained on the media, FTL must recreate
the missing portions of the VBM in host system RAM.
A slower way of performing the virtual to logical
translation would be for FTL to scan the BAM entries

E AP-684

13

for the desired Virtual Data block. Exactly how much of
the VBM to maintain in RAM is dependent on available
system memory and performance needs. In maintaining
a portion of the VBM in RAM, FTL may not need to
update the media every time a Virtual Data block is
written.

VBM entries may range from 0x00000000 to
0xFFFFFFFF. However, all values in between must be a
multiple of BlockSize. A VBM entry of 0x00000000
indicates that either the logical address of the Virtual
Data block is located on a Replacement Page if one
exists or that the block simply does not exist on the
media. A VBM entry of 0xFFFFFFFF also indicates that
the Virtual block does not exist on the media. FTL
returns BlockSize bytes of “0”s as virtual data if the host
system requests a Virtual Data block not present on the
media.

• Related FTL Functions:

 Fill_VBM_PageMap

6.0 VIRTUAL PAGE MAP–LOCATING
THE VIRTUAL BLOCK MAP
PAGES

If any portion of the VBM is maintained on the media,
FTL must track and locate those VBM Pages. The
Virtual Page Map (VPM) performs a function similar to
that of the VBM. Instead of mapping the location of
Virtual Data blocks, each entry in the VPM maps the
location of a VBM Page. The FTL specification does not
define a way to maintain the VPM on the media and
therefore typically must be constructed when the media
is accessed for the first time. This is accomplished by
scanning the media for VBM entries and constructing a
table to them in system RAM.

6.1 Page Map Handling

The BAM is scanned to locate VBM Pages and
Replacement Pages and the logical locations are stored
in the VPM. The total number of VBM Pages found
must equal NumVMPages. If a VBM Page is missing
and a Replacement Page exists for that page, the
Replacement page is used as the original VBM Page. If
a VBM Page is missing and a Replacement Page does
not exist, recovery operations must be performed. If
duplicate VBM Pages are found, only one is used.

VBM Pages and Replacement Pages use negative BAM
entries. Therefore, the virtual addresses are also
negative. A page’s virtual address can be calculated by
multiplying the page number by the size of a Virtual
block. One important item of note is the fact that the
page numbers are negative. The VBM Page would be
–NumVMPages and –1 would be the last page.

6.2 Replacement Pages

Replacement VBM pages are identical to normal VBM
pages except for the fact that replacement pages have
BAM entries with the least significant seven bits ending
in 0x60 while normal VBM pages have BAM entries
ending in 0x40. Both types of VBM pages have BAM
entries with negative values. A Replacement Page is
used only if the original VBM Page has a VBM entry of
0x00000000 for the Virtual Data block being accessed.
If the corresponding entry in the Replacement Page is
also zero (0), then the Virtual block does not exist on the
media. Replacement Pages enhance performance by
minimizing the need to supersede VBM Pages when
logical addresses on a Page are updated and the existing
entry is already used. A replacement page may delay the
need to rewrite the VBM Page. If the corresponding
entry on a Replacement Page is available, then it is used
and the original page need not be rewritten right away.
Like normal VBM Pages, Replacement Pages are also
allocated from any free Read/Write blocks in any Erase
Unit.

6.2.1 REPLACEMENT PAGE MAP

FTL uses a duplicate VPM to keep track of the
Replacement Pages. The Replacement VPM is quite
similar to the normal VPM except that it points to the
Replacement VBM pages. Each VBM Page is capable of
having a Replacement Page. Even though the
replacement VPM array is allocated large enough to map
out a Replacement Page for every VBM Page, only one
Replacement Page should be implemented. This is to
guarantee compatibility and media interchangability
between all FTL solutions. The Replacement Page is
located via a scan of the BAM at the time the media is
inserted.

NOTE:

The FTL specification in PC Card 95 allows for
up to four Replacement Pages at the present time.
This will be changed in future revisions to
specify only one Replacement Page.

• Related FTL Functions:

 Fill_VBM_PageMap

AP-684 E

14

7.0 LOGICAL TO PHYSICAL
MAPPING

All of the addresses stored in the VBM and VPM arrays
are logical addresses. The logical address points to a
location on the media described when the Erase Units
are arranged in logical order. The LogicalEUN field
indicates the logical number of each block. FTL matches
the LogicalEUN to a PhysicalEUN by scanning the
media and recording the relationship in an array at
initialization/card insertion. These relationships are used
to translate between physical and logical addresses. A
logical address may be treated as having two distinct
sections. The first, consisting of the most significant
bits, refers to the LogicalEUN. The second part,
consisting of the least significant bits, is an offset into
that particular Erase Unit. The number of bits in each
part is dependent upon the size of the Erase Unit.

• Related FTL Functions:

 GetSectorAddr

 Logical2Physical

8.0 READ

FTL processes Virtual block data read requests from the
host operating system. Virtual block data is accessed
with the number of a Virtual block passed from the host.
The block number is used as an index into the VBM to
obtain the logical address of the Read/Write block. In
order to read the data, FTL translates the logical address
to a physical address. If the VBM entry for the
Read/Write block is 0xFFFFFFFF, then the Virtual
Block does not exist and a buffer of “0”s is returned to
the host. If the entry is 0x00000000, then the block’s
logical address may be located on the Replacement
Page. If the Replacement Page does not exist or if the
entry is 0x00000000, then the Virtual block does not
exist and a buffer of “0”s is returned to the host.

• Related FTL Functions:

 FillReadRequest

9.0 WRITE

Virtual Block data writes are the most complex part of
FTL. When the host system tells FTL to perform a write
operation, FTL must find a free Read/Write block on the
media. If one is not found, Erase Unit recovery may take
place. (See Section 10 about unit recovery). If a

free Read/Write block is found, the free Read/Write
block’s BAM entry is set to 0xFFFFFFFE to indicate
that a write is taking place in that Read/Write block.
Should the media write be interrupted, FTL will be able
to mark the block as deleted. Upon completion of the
write operation, the BAM entry is updated to the Virtual
Block’s virtual address. The Virtual Block data is then
written out to the Read/Write block. The VBM is
updated to point to the new area assigned to this Virtual
Block. If the new block is replacing an existing block,
the old Read/Write block’s BAM entry is set to
0x00000000.

• Related FTL Functions:

 FillWriteRequest

 Find_BAM_Entry

 DiscardSector

10.0 UNIT RECOVERY/RECLAIM

As the media is used, it will eventually fill up.
Read/Write blocks marked as deleted or superseded may
only be reused after being returned to the erased state.
Due to the nature of flash technology, all the Read/Write
blocks in the same Erase Unit must be erased at the
same time. However, it is not very often that all the
Read/Write blocks in the Erase Unit are marked as
deleted or superseded at the same time. The unit
recovery (reclaim) process preserves the data in valid
Read/Write blocks while recovering the deleted blocks
in the same Erase Unit.

Reclaim requires the media to have at least one usable
Transfer Unit. A Transfer Unit is an Erase Unit
completely in a erased state except for its EUH. Transfer
Units are used to store valid data from an Erase Unit
being erased. Upon locating a properly prepared transfer
unit, FTL sets the unit’s LogicalEUN to 0x7FFF to
indicate that a unit recovery is in progress. A properly
prepared transfer unit is one which has the global areas
of the EUH initialized and which has erased regions for
Virtual Block data, VBM Pages, Replacement Pages and
the BAM. Upon completion of the unit recovery
procedure, the LogicalEUN will be changed to the
LogicalEUN of the recovered Erase Unit. The old Erase
Unit is erased and reformatted as a Transfer Unit.

• Related FTL Functions:

 DoReclaim

E AP-684

15

APPENDIX A
GLOSSARY

Block Allocation Map (BAM) .. This is a method of storing Block Allocation
Information about the status of Read/Write Blocks.

BIOS Parameter Block (BPB) ... This DOS FAT structure provides the Operating
System with information about the media and the
partition.

Control Units... Read/Write blocks used by FTL for storing EUH,
BAM, ECC, etc.

ECC... Error Correction Code.

EDAC.. Error Detection and Correction.

Erase Unit Header (EUH).. This header contains information specific to the
Erase Unit and global information about the entire
FTL partition.

Erase Unit.. The area of the flash media handled as a single
erasable unit by FTL. It may contain one or more
erase zones. This area is determined during media
formatting time.

Erase Zone... An area of flash which must be erased as a single
unit due to the characteristics of the media.

FAT ... File Allocation Table.

FTL.. File Translation Layer.

Little - Endian ... Method of storing data where the lowest byte address
contains the least significant byte.

Logical Address... This address is based on accessing the media in a
Logical Erase Unit order.

Logical Erase Unit Number (LogicalEUN)..................................... Logical Unit Number. This is a logical number
assigned to a Erase Unit by FTL. This field is
contained in the EUH.

LUN... See Logical Erase Unit Number.

Memory Technology Driver (MTD) ... This driver contain device specific algorithms.

Partition ... A region of the flash media dedicated for use by a
single file system.

Partition Boot Record (PBR)... This structure contains partition information and the
BPB.

AP-684 E

16

PCMCIA ..Personal Computer Memory Card International
Association

Physical Address ..This address is based on accessing the media in a
physical erase unit order.

Physical Erase Unit Number (PhysicalEUN)This is a number assigned to an Erase Unit based on
its physical location on the media. This number
never changes for a Erase Unit.

Reclaim ..This is the procedure for recovering
deleted/superseded Read/Write Blocks for reuse.
This process includes the preservation of valid data
and erase the entire Erase Unit.

Read/Write Block...A subdivision of an Erase Unit. FTL tracks the
allocation of each piece.

Replacement Page ..VBM pages that contain superseded entries from
original VBM page.

Spare Block ..A erase unit reserved for reclaim usage.

Transfer Unit ..See spare block.

E AP-684

17

APPENDIX B
STRUCTURES

EUH struct – Erase Unit Header Structure

Offset Size Field Description

0 BYTE LinkTargetTuple[5] PCMCIA Link Target tuple
TPL_CODE CISTPL_LINKTARGET (13H)
TPL_LINK 3
TPLTG_TAG ‘C’, ‘I’, ‘S’

5 BYTE DataOrgTuple[10] PCMCIA Data Oranization tuple
TPL_CODE CISTPL_ORG (46H)
TPL_LINK At least fifty-seven (57)
TPLORG_TYPE TPLORGTYPE_FS (0)
TPLORG_DESC “FTL100”, 0

15 BYTE NumTransferUnits Number of transfer units in partition. Must be at least one
or else media is a WORM.

16 DWORD Reserved Reserved

20 WORD LogicalEUN Logical Erase Unit Number of this block. The LogicalEUN
of a formatted Transfer Unit is the media’s erase state.
(i.e., 0xFFFF).

21 BYTE BlockSize Size of a Read/Write Block. This value is expressed as a
log2 value.

22 BYTE EraseUnitSize Size of a Erase Unit. This value is expressed as a log2

value. Erase Units must be a multiple of the flash device’s
Erase Zone size.

24 WORD FirstPhysicalEUN Physical Erase Unit where FTL partition begins.

26 WORD NumEraseUnits Total number of Erase Units in partition. This value
includes Erase Units used to store data, block allocation
information, checksums, transfer units, replacement
pages, spare blocks, and Virtual Block Map pages.

28 DWORD FormattedSize Total formatted size of partition. This is the total about of
free space available to the host system for file storage.
This valued does not include areas marked as format
blocks, transfer units, replacement pages, and Virtual
Map pages. This value is in bytes and must be a multiple
of BlockSize.

32 DWORD FirstVMAddress First virtual address physically mapped in VBM page on
media. If the value in this field is zero (0), then the entire
VBM is maintained on the media. If the value exceeds the
FormattedSize, none of the VBM is maintained on the
media. However, space must be reserved on the media
for the entire VBM at all times.

AP-684 E

18

EUH struct – Erase Unit Header Structure (Continued)

Offset Size Field Description

36 WORD NumVMPages Total number of VBM pages.

38 BYTE Flags Special bit-mapped flags indicating checksum, block
allocation information, and flash polarity.

39 BYTE Code Binary value designating type of EDAC, ECC, CRC, or
checksum maintained for Virtual block data. No such
information is present if the field is in the erase state. In
the non-erase state, such information was present at a
time, but is no longer maintained. For a value of one, a
two- byte checksum is computed and maintained for each
Virtual block.

40 BYTE SerialNumber[4] Partition serial number.

44 DWORD AltEUHOffset Offset of alternative EUH.

48 DWORD BAMOffset Offset of BAM from start of EUH. This value is expressed
in bytes and is only valid if the Flags - HiddenAreaFlag is
set to zero (0). The BAM need not be aligned on a Virtual
Block boundary. If the Flags - DoubleBAI bit is set to one
(1), two copies of the BAM are maintained on the media.
If checksums, CRCs, or ECCs are used in the Erase Unit,
these codes follow the block allocation information.

52 BYTE Reserved[12] Reserved for future use.

RootEntries struct–Root Directory Entry Structure

Offset Size Field Description

0 BYTE Name[8] Name of file/directory

8 BYTE Ext[3] File/directory extension

11 BYTE Attribute File/directory attributes

12 BYTE Reserved[10] Reserved (not used)

22 WORD Time Time file/directory was created or last updated

24 WORD Date Date file/directory was created or last updated

26 WORD StartCluster Starting cluster of file/directory

28 DWORD Size Size of file/directory

E AP-684

19

APPENDIX C
FTL AVAILABILITY

M-System TrueFFS* (v3.2 and up are FTL)

M-Systems, Inc. M-Systems, Ltd
4655 Old Ironsides Drive Atidim Industrial Park
Suite 290 P.O. Box 58036
Santa Clara, CA 95054 Tel Aviv, Israel 61580
 Tel: (408) 654-5820 Tel: 972-3-647-7776
Fax: (408) 654-9107 Fax: 972-3-647-6668
 email: info@ccm.msyscal.com email: info@msys.co.il
WWW: http://www.m-sys.com WWW: http://www.m-sys.com

SCM SwapFTL* (v3.0 and up are FTL)

SCM Microsystems, Inc. SCM Microsystems, GmbH
4655 Old Ironsides Drive Muhlhauser Str. 2
131 Albright Way. Erfurt D-99092, Germany
Los Gatos, CA 95030
Tel: (408) 370-4888 Tel: (49) 361-66-4870
FAX: (408) 370-4880 FAX: (49) 361-211-3515
email: pccard@scmmicro.com email: pccard@scmmicro.com
WWW: http://www.scmmicro.com WWW: http://www.scmmicro.com

SystemSoft FTL

SystemSoft, Inc. (Main) SystemSoft, Inc. (West)
2 Vision Dr. 2350 Mission College Blvd
Natick, MA 01760 Suite 450

Santa Clara, CA 95054-1534
Tel: (508) 651-0088 Tel: (408) 988-6756
FAX: (508) 651-8188 FAX: (408) 988-6758
email: wizard@systemsoft.com email: wizard@systemsoft.com
WWW: http://www.systemsoft.com WWW: http://www.systemsoft.com

AP-684 E

20

APPENDIX D
ADDITIONAL INFORMATION

Related Documents

PC Card Standard, Media Storage Formats Specification and the Flash Translation Layer Specification are available
through PCMCIA:

 PCMCIA
 2635 North First Street
 San Jose, CA 95134

Telephone: (408) 433-2273
Fax: (408) 433-9558

Related Information

FTL is based on Intellectual Property and patent(s) from M-Systems, Ltd. All rights are reserved by M-Systems. M-
Systems does grant a royalty-free, non-exclusive license for the design and development of FTL-compatible drivers,
file systems, and utilities using the data formats with PCMCIA PC Cards as described in the FTL Specification. Please
see the PC Card standard, available from PCMCIA, for detailed information.

M-Systems provides software which incorporates the FTL standards and algorithms. For information on contacting
them, or other FTL providers, please refer to Appendix C, FTL Availability.

	TITLE
	CONTENTS
	REVISION HISTORY
	1.0 INTRODUCTION
	2.0 OVERVIEW OF FLASH TRANSLATION LAYER
	2.1 Virtual Block Device
	2.2 Flash Technology

	3.0 ERASE UNITS
	3.1 Erase Unit Header
	3.1.1 FLAGS

	3.2 Block Allocation Information
	3.3 Block Allocation Map

	4.0 VERIFY FTL PARTITION
	5.0 VIRTUAL BLOCK MAP– VIRTUAL-TO-LOGICAL MAPPING
	5.1 First Virtual Mapped Address

	6.0 VIRTUAL PAGE MAP–LOCATING THE VIRTUAL BLOCK MAP PAGES
	6.1 Page Map Handling
	6.2 Replacement Pages
	6.2.1 REPLACEMENT PAGE MAP

	7.0 LOGICAL TO PHYSICAL MAPPING
	8.0 READ
	9.0 WRITE
	10.0 UNIT RECOVERY/RECLAIM
	APPENDIX A: Glossary
	APPENDIX B: Structures
	APPENDIX C: FTL Availability
	APPENDIX D: Additional Information
	FIGURES
	Figure 1. FTL Sector Relocation
	Figure 2. Example of Flash Commands/Content Changes
	Figure 3. Erase Unit Divided into Read/Write Blocks. Each Read/Write Block Is the Same Size as a Virtual Block (Sector) Used by
	Figure 4. Block Allocation Map Example
	Figure 5. Virtual Block Map Page Example

	TABLES
	Table 1. Erase Unit Header Flags Field
	Table 2. Erase Unit Header
	Table 3. Block Allocation Information
	Table 4. Block Allocation Information Example
	Table 5. FTL Data Organization Tuple

